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Over the last five years several experimental groups have reported anomalies in the temperature dependence
of the period and amplitude of a torsional oscillator containing solid 4He. We model these experiments by
assuming that 4He is a viscoelastic solid—a solid with frequency-dependent internal friction. We find that
while our model can provide a quantitative account of the dissipation observed in the torsional oscillator
experiments, it only accounts for about 10% of the observed period shift, leaving open the possibility that the
remaining period shift is due to the onset of superfluidity in the sample.

DOI: 10.1103/PhysRevB.79.100504 PACS number�s�: 67.80.bd, 46.35.�z

I. INTRODUCTION

In 2004 Kim and Chan1,2 reported anomalies in the reso-
nant period of a torsional oscillator �TO� containing solid
4He. With exquisite sensitivity they detected a reproducible
decrease in the oscillator period upon lowering the tempera-
ture below 200 mK. Subsequent experiments in several
laboratories3–11 have now reproduced these results. The size
of the effect depends on the sample preparation, pressure,
and concentration of 3He impurities. References 12 and 13
review the recent theoretical and experimental works.

A natural interpretation of the TO anomalies is the onset
of the elusive and long-anticipated supersolid phase of
matter.14–16 In a supersolid, superfluidity coexists with the
crystalline order of a solid; one expects a supersolid to ex-
hibit superflow, much like a superfluid. Leggett16 proposed
that the superflow is best detected by searching for “nonclas-
sical rotational inertia”: a superfluid condensate would re-
main at rest and not participate in rotation, and the resulting
mass decoupling would reduce the rotational inertia and
would decrease the resonant period of oscillation. While
compelling, the supersolid interpretation of these experi-
ments has yet to be corroborated by other measurements,
such as the response to pressure differences.17 Moreover,
Day and Beamish18 reported a pronounced increase in the
shear modulus of 4He at temperatures below 200 mK, with a
dependence on measurement amplitude and 3He impurity
concentration similar to the TO anomalies. Their results sug-
gest that changes in the shear modulus might be intimately
related to the TO anomalies.

This work presents a detailed discussion of the mechani-
cal response of a TO containing a viscoelastic solid. We
build on earlier work by Nussinov et al.,19 who correctly
identified a “back-action” term in the TO equation of motion
that represents the dynamical effect of the solid helium on
the torsion cell. However, in contrast to Nussinov et al.19 we
find no need to assume that the solid helium behaves as a
glass. Instead, with a few carefully stated assumptions, we
find that we can model the solid helium as a classical vis-
coelastic solid—i.e., a solid with internal friction. The TO
period shift and dissipation peak are naturally related to the
real and imaginary parts of the frequency-dependent shear
modulus of the solid. We use our results to fit the dissipation
peak reported by Clark et al.5 and extract a temperature-

dependent time scale ��T� from the data. With all of the
phenomenological parameters determined, we find that we
are only able to account for about 10% of the period shift
reported in Ref. 5, leaving open the possibility that the re-
maining shift is due to the onset of superfluidity �or super-
solidity� in these samples.

II. THE MODEL

Following Nussinov et al.,19 we assume that the empty
torsion cell is perfectly rigid, with a moment of inertia Iosc
about its rotation axis. For small angular displacements � the
torsion rod provides a restoring torque −��, with � as the
torsional spring constant. There is also a damping torque
−�oscd� /dt, with �osc as a temperature-dependent dissipation
coefficient. The cell is driven by an external driving torque
of �ext�t�. Finally, the solid helium inside the torsion cell
exerts a moment M�t� on the cell. The equation of motion for
the cell is then

�Iosc
d2

dt2 + �osc
d

dt
+ ����t� = �ext�t� + M�t� , �1�

with M�t�=�dt�g�t− t����t�� for a linear system that is invari-
ant under time translations. We can Fourier transform the
equation of motion to find the response function ����
=���� /�ext��� of the TO:

�−1��� = − Iosc�
2 − i�osc� + � − g��� . �2�

The response function is of fundamental importance in inter-
preting the TO experiments as its poles give the resonant
frequencies and their quality factors.

The complex back-action term g��� contains all of the
information about the dynamical response of the solid he-
lium, and modeling this quantity is the focus of the remain-
der of this Rapid Communication. Before delving into calcu-
lational details we can make a few general statements about
g���. First, causality requires g�z� to be analytic in the upper
half of the complex z plane, so the real and imaginary parts
of g�z� satisfy Kramers-Kronig relations for z=�. Second, if
the helium behaves as a perfectly rigid, normal solid, g���
= IHe�

2, with IHe as the rigid-body moment of inertia of the
helium. As we will show below, a finite shear modulus pro-
duces corrections to this result which vanish with a higher
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power of � at low frequencies. Therefore g��=0�=0; the
backaction only modifies dynamical quantities. At low fre-
quencies the “glassy” model for g��� proposed by Nussinov
et al.19 �see Eq. �20� of Ref. 19� goes to a constant and
induces an unphysical shift in the static spring constant �.

To calculate the back-action term we first need to model
the properties of the helium in the torsion cell. To keep the
description as general �and simple� as possible we model the
helium as an elastic continuum, with an equation of motion

��t
2ui = � j	ij , �3�

where � is the density, ui is the ith component of the dis-
placement field, and 	ij is the stress tensor. The stress tensor
has both a reversible piece 	ij

r and a dissipative piece 	ij
d ,

with 	ij =	ij
r +	ij

d .20 For a linear medium the reversible stress
is linearly related to the strain tensor uik= ��kui+�iuk� /2 by
	ij

r =
ijklukl, where 
ijkl is a fourth-rank tensor of elastic co-
efficients. For a uniaxial crystal such as the hcp phase of 4He
there are five independent components of 
ijkl; however, to
simplify the analysis we assume that the helium can be mod-
eled as an isotropic elastic solid, with 	ij

r =2�0uij +
0�ijukk,
where 
0 and �0 are the Lamé coefficients �with �0 as the
shear modulus�. The dissipative part of the stress tensor,
which describes the internal friction of the solid, must be
odd under time reversal and can only depend on gradients of
the velocity vi=�tui.

20 For a linear medium 	ij
d =ijklvkl,

where ijkl is the viscosity tensor of the solid and vik
���ivk+�kvi� /2. Again assuming an isotropic medium, 	ij

d

=2vij + ��−2 /3��ijvkk, with  and � as the shear and bulk
viscosities of the solid. With these simplifications the Fourier
transformed equation of motion becomes

− ��2u = B��� � �� · u� − ���� � � � � u , �4�

with B���=
0+2�0− i���+4 /3� and ����=�0− i�
��0�1− i���, with time scale �= /�0. In passing we note
that this model, known as the Kelvin-Voigt model, is among
the simplest of viscoelastic models—a single “spring” �the
elasticity� is in parallel with a single “dashpot” �the viscos-
ity�. More elaborate models, involving series and parallel
combinations of springs and dashpots, can produce a shear
modulus ���� with a more complicated frequency depen-
dence. For an example of a similar analysis for colloidal
crystals, see Ref. 21.

The next step is to determine the response of the helium
inside the torsion cell to the rotation of the cell. For simplic-
ity we will present results for a torsion cell that is an infi-
nitely long cylinder of radius R; the generalizations to an
annular geometry or a cylinder of height h are
straightforward.22 If we assume the helium is in perfect con-
tact with the walls of the torsion cell �no-slip boundary con-
ditions� and the torsion cell oscillates about its azimuthal
axis with a frequency � and amplitude �0, then the induced

displacements in the helium have the form u=u��r�e−i�t�̂.
Substituting this into Eq. �4� and solving the differential
equation with the no-slip boundary condition u��r=R�=R�0,
the solution that is finite at r=0 is

u��r� = R�0
J1�kr�
J1�kR�

, �5�

where k2=�2� /���� and J1�z� is the Bessel function of order
1. In this geometry the torsion cell only induces shearing
displacements in the helium.

The final step of the calculation is to determine the mo-
ment that the oscillating helium exerts back on the torsion
cell. The only nonvanishing component of the stress tensor is
	�r=������r−1 /r�u��r�. Evaluating this on the surface of
the cylinder, integrating over the area of the cylinder to ob-
tain a force, and then multiplying by the radius to obtain a
torque, we find the moment

M�t� = − �0�2IHe
4J2�kR�

kRJ1�kR�
e−i�t, �6�

where IHe=��hR4 /2 is the rigid-body moment of inertia for
the helium inside the torsion cell. In terms of the back-action
term g��� defined in Eq. �2�,

g��� = IHe�
2 + IHe�

2g̃�kR� , �7�

where the function

g̃�x� =
4J2�x�
xJ1�x�

− 1 �8�

is the correction to the rigid-body result due to the finite
shear modulus of the helium.

To simplify our result, we note that for a typical TO the
speed of transverse sound cT=	�0 /�
270 m /s, the fre-
quency f 
103 s−1, and the radius R
0.5 cm so that �k�R
=2�fR /cT
0.1. Therefore we can safely expand Eq. �8� for
small x, with the result g̃�x��x2 /24; then Eq. �2� becomes

�−1��� � − Itot�
2 − i�osc� + � −

�R2�4IHeF�R/h�
24����

, �9�

where Itot= IHe+ Iosc. We see that the last term in Eq. �9� is the
correction due to a finite shear modulus; for a perfectly rigid
body, �→� and this term vanishes. Also, in this last term
we have introduced a function F�x� to describe the effect of
a finite cylinder height h �Ref. 22�; this function only de-
pends on the aspect ratio x=R /h, with the explicit form

F�x� = −
192

�4x2 
m=1

�
1

�2m − 1�4 g̃�i�2m − 1��x� . �10�

For the infinite cylinder F�0�=1, and more generally 0
�F�x��1. For large x, F�x��2 /x2−744��5� /�5x3, with
��n� being the Riemann-Zeta function. In the particular case
h=R, F�1�=0.527.

We now examine the effect of the viscoelasticity of the
helium on the period and Q factor of the oscillator by finding
the poles of the response function �Eq. �9�� �our analysis is
similar to the procedure performed by Nussinov et al.19�.
Since �k�R=�0R /cT
0.1 and IHe / Itot
10−3, we can treat the
fourth term in Eq. �9� as perturbation about the rigid-body
behavior, which has a resonant frequency �0=	� / Itot and
dissipation Q0

−1=�osc /	Itot�. Expanding the poles about �0
and Q0

−1 and recalling that ����=�0�1− i���, we obtain the
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fractional period shift �P / P0= �P− P0� / P0 and the shift in
the dissipation �Q−1=Q−1−Q0

−1:

�P

P0
= A Re� �0

���0�� = A
1

1 + ���0�2 , �11�

�Q−1 = 2A Im� �0

���0�� = 2A
��0

1 + ���0�2 , �12�

where the dimensionless amplitude A is given by �recall cT

=	�0 /��

A =
F�R/h�

48

IHe

Itot
��0R

cT
�2

. �13�

While A depends on the material parameters and the sample
geometry, it is independent of the relaxation time �. For a
typical TO the amplitude A is of order 10−6–10−7, so the
resulting shifts are small, as assumed. As we will show be-
low, amplitudes in this range can quantitatively fit the dissi-
pation peak but are a factor of 10 too small to fit the period
shift of the TO results.

The simple Lorentzian form of these results suggests a
strategy for fitting the TO experimental data. Notice that
�Q−1 will have a peak as a function of temperature T if the
relaxation time � passes through the time scale �0

−1 as the
temperature is lowered; the peak occurs at T� such that
�0��T��=1, and at this temperature �Q−1�T��=A. Therefore,
A can be directly determined from the peak value of the
dissipation; we can then solve Eq. �12� for �0� in terms of
�Q−1�T� /A as a function of temperature, allowing us to de-
termine ��T�. Having determined both A and �, we can then
calculate the period shift �P / P0 as a function of tempera-
ture, with no additional fitting parameters. In passing we
note that the temperature dependence of the shear modulus
itself18 has a much smaller effect on the period shift and
dissipation than the temperature dependence of the relaxation
time �.

In Fig. 1 we show the relaxation time obtained from the

measured Q factor of the BeCu TO used in Ref. 5 �to col-
lapse all of the data onto a single curve we have scaled the
temperature by the peak temperature T��. On this log plot we
clearly see activated behavior both below and above T� but
with different activation energies. To account for this behav-
ior, we will assume that the relaxation time � has the func-
tional form

��T� =
�0 exp�E0/T�

1 + � exp�E1/T�
. �14�

For BeCu TO data of Ref. 5 we obtain �0=260 ns, �=1.62
�10−3, E0=7.55T�, and E1=7.01T�. At high temperatures,
the activation energy for the blocked capillary sample of
BeCu TO of Ref. 5 is found to be E=260.4 mK �417.5 mK
for the annealed blocked capillary sample and 341.4 mK for
the constant temperature sample�, and at low temperatures
E=18.6 mK �29.8 and 24.4 mK, respectively�. By using the
derived relaxation time � the fits to the dissipation peak and
period shift data from Ref. 5 are shown in Figs. 2 and 3.
Having fit to the dissipation peak, we see that the same set of
parameters accounts for only 10%–20% of the period shift
observed in these experiments.
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FIG. 1. �Color online� Relaxation times derived from �Q−1�T�
of BeCu TO of Clark et al. �Ref. 5�. Squares �green� represent the
blocked capillary �BC� sample, circles �blue� represent the annealed
blocked capillary �ABC� sample, and triangles �pink� represent the
constant temperature �CT� sample. The heavy line �red� was found
by fitting to all three samples and using ��T��0=a exp�bT� /T� /
�1+c exp�dT� /T�� with fitting parameters a=1.75�10−3, b=7.55,
c=1.62�10−3, and d=7.01.
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FIG. 2. �Color online� Peaks in the inverse of the quality factor
of BeCu TO from Clark et al. �Ref. 5�. Squares �green� represent
the BC sample, circles �blue� represent the ABC sample, and tri-
angles �pink� represent the CT sample. The heavy line �red� is of the
viscoelastic model with the change in Q factor �12� and derived
relaxation time �14�.
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FIG. 3. �Color online� Resonant period shifts of BeCu TO from
Clark et al. �Ref. 5�. Squares �green� represent the BC sample,
circles �blue� represent the ABC sample, and triangles �pink� repre-
sent the CT sample. The heavy line �red� is of the viscoelastic
model with resonant period shift �11� and derived relaxation time
�14�.
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III. CONCLUSION

In summary, we investigated the viscoelastic behavior of
solid 4He at low temperatures. The response of a viscoelastic
solid to an oscillatory shear stress is determined and used to
study the anomalies in the resonant period and the dissipa-
tion of the TO experiments. Our approach is quite general,
invoking the linear response of the helium together with the
simplifying assumption of isotropy; our framework can be
used to study other phenomenological models for the me-
chanical behavior of solid helium. For instance, we could
also treat a model with a distribution of relaxation times,
such as a “glass” model for the shear modulus19 of the form
����=�0�1− i����. The simple single relaxation time
Kelvin-Voigt model identifies a time scale associated with
the viscosity of solid 4He; upon lowering the temperature,
this relaxation time grows rapidly and eventually passes
through �0

−1, inducing changes in both the dissipation and the

oscillator period. While the dissipation peak can be ex-
plained completely using the viscoelastic model, the model
accounts for only a fraction of the period shift observed in
Ref. 5 �although fits to some data6 yield a smaller discrep-
ancy between the model results and measured period shifts�.
As originally suggested,1,2 the remaining period shift may
indeed be due to the onset of some type of superfluidity in
the solid helium.
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